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Abstract 
 
This paper provides information related to integrating Knowledge Based (KB) techniques within 
the filtering, detection, tracking and target identification portions of an airborne radar’s 
processing chain.  We will present multiple information sources and how they can be used to 
enhance a radar’s performance for end-to-end signal and data processing. 
 

Introduction 
 
In our previous paper we presented material for understanding some of the basic elements 
regarding knowledge bases and artificial intelligence (AI).  In this paper we wish to present a 
design of an intelligent airborne radar system that processes information from the end-to-end, i.e. 
filter, detector and tracking stages of a surveillance radar.  Can we build new radar systems that 
can dynamically change its processing given information from other sensors, outside sources, 
weather data, etc.?  We believe that we can.  The computing clock rates for computers have been 
doubling approximately every 18 months.  Today’s commercial off the shelf computers have 
clock rates exceeding 3 GHz.  We believe that the computing power is available to insert 
sophisticated “rules/logic” within radar signal and data processing.   
 
The following section will pick up where we left off in our first paper, dealing with ontologies.  A 
global view of interfacing multiple platforms of sensors and the integration of sensors on one 
platform will be discussed.  The next section will describe the major knowledge base components 
of an airborne intelligent radar system (AIRS).  The next section will provide an overview of how 
the AIRS processes data within different states. The following section discusses the issues with 
adapting an AIRS architecture for sensors on board unmanned air vehicles (UAV).  The 
following section will provide a knowledge base tracking algorithm with memory thereby 
providing information helpful for target identification and terrain resolution.  The last section 
provides our summary.   
 A Global View 
 
The performance of our sensor systems can be enhanced by dynamically controlling a sensor’s 
algorithms dependent upon a changing environment.  The sharing of information in real time 
with other sensors is also a major plus.  It has been shown in this lecture series that if an airborne 
radar system knows about certain features of the Earth (e.g. land sea interfaces) and its 
surroundings then it can use this information intelligently and increase its performance.  A radar 
system can perform better with information from other sensors, e.g. sensor fusion.  It could 
perform better if it knew where potential jammers were located and their characteristics. 
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However, if an airborne radar is going to share and receive information from multiple sources 
then it must be able to communicate and understand the information.  A solution for the 
exchange of information between heterogeneous sensors is for each sensor to publish information 
based upon shared ontologies.  In this manner when a sensor publishes its track data multiple 
sensors receiving this information will be able to interpret its contents without ambiguity.   
Accomplishing this will require that certain basics be established.  We must have an accepted 
method of defining the Earth’s geometry such that every element on the Earth, air or space’s 
positions are all defined within the same coordinate system.  That each element is time 
synchronized with the same clock and all communications are time stamped.   
 
Each transmission of information between sensors must depict its time and its coordinates.  In 
addition if it is sharing track or target data it must specify their unique identifier, its velocity, 
pitch, yaw, and role and meta data describing the transmitted raw data along with 
encryption/decryption keys.  The unique identifier will allow the receiving sensor to acquire, 
within its resident database management system (DBMS), all of the sender’s radar 
characteristics.  The description of these data can be defined by ontologies such that all the 
sensor platforms will correctly understand the information provided.  Sensor characteristics 
include such things as nomenclature, power output, bandwidth, frequency, antenna pattern, pulse 
width, pulse repetition frequency (PRF), etc.  Platform characteristics as to the position of the 
antenna on the platform, number of elements, the pattern of the elements, the pointing vector of 
the radar, etc.  We need an ontology for defining these data and numerous rules so that the 
information published by any sensor can be understood correctly by the receiving sensor to 
perform functions such as sensor fusion, track correlation, and target identification.  
 
Sharing information between sensors on the same platform is also required, especially if one or 
more sensors are adaptively changing its waveform parameters to meet the demands of a 
changing environment.  Figure 1 depicts a hypothesized intelligent sensor system.  Each of the 
sensors has its own signal and data processing functional capability.  In addition to this capability 
we have added an intelligent processor to address fusion between sensors, communication 
between sensors, and control of the sensors.  The goal is to be able to build this processor so that 
it can interface with any sensor and communicate with the other sensors using ontological 
descriptions via the intelligent platform network.  The intelligent network will be able to 
coordinate the communications between the sensors on board and to off platform sensor systems.  
There are approaches we can exploit to build this system by using fiber optic or wire links on 
board the platform.  Radio frequency (RF) links using Bluetooth or 802.11 technologies can be 
exploited for linking these sensors on board the platform.  Between platforms other technologies 
may be exploited such as mobile internet protocol over RF communications links.  The 
communications issues need to be addressed for the sharing of information and for minimizing 
the potential of electromagnetic (EM) fratricide.  The intelligent platform should determine if 
there is EM interference (EMI) potential when a sensor varies their antenna’s main beam 
pointing vector, or changes its PRF and may thereby cause interference to a receiving sensor.  
Rather than have each sensor on a platform operate as an independent system we need to design 
our platform as a system of sensors with multiple goals managed by an intelligent platform 
network that can manage the dynamics of each sensor to meet the common goal(s) of the 
platform.  This is one of the major goals we are pursuing under our sensors as robots initiative.  
This initiative is addressing attended and un-attended sensor platforms.       
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Figure 1. An Intelligent Sensor System 
 
 

An Airborne Intelligent Radar System (AIRS) 
 

The KB signal and data processing portion shown in figure 1 may represent one radar sensor 
system.  If this sensor system is built using knowledge based techniques then there exists 
intelligence to control its own processing.  A modified design obtained from the KB Space Time 
Adaptive Processor (KBSTAP) effort (2) is shown in figure 2.  In this section we will describe the 
major components of this knowledge base radar design.  In the figure we have labeled the major 
components as processors with the knowledge base controller as the major integrator for 
communications and control of the individual processors.  These processors operate 
independently and cooperatively.  They can be implemented on a separate computer or on the 
same computer and operate as separate software processes.  The knowledge base controller 
(KBC) receives information from many sources.  Data about the radar, its frequency of operation, 
antenna configuration, where it is located on the aircraft, etc. is provided by the block labeled in 
figure 2, configuration information.  The map data is preloaded before each mission for 
estimating clutter returns and for registering its location relative to the Earth and with other 
sensor platforms.  It is also preloaded with its flight profile data and is updated continuously from 
the platforms navigation system.  It also will receive information from the intelligence 
community both before a mission and throughout the mission.  During flight, the KBC will 
receive information about weather, jammer locations, requests for information, discrete locations, 
fusion information, etc.  We are assuming that the radar system is aboard a surveillance aircraft 
flying a known and repeatable path over the same terrain.  Therefore it can learn by monitoring 
the performance of different algorithms over repeatable passes of terrain. 
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Figure 2. An AIRS Architecture 
 
The KBC performs the overall control functions of the AIRS.  It assigns tasks to all processors, 
communicates with outside system resources, and "optimizes" the system’s global performance.  
Each individual processor "optimizes" its individual performance measures, e.g. signal-to-noise 
ratio and probability of detection.  The tracker with the KBC, for example, "optimizes" the 
number of correct target tracks and "minimizes" the number of missed targets, incorrect tracks, 
and lost tracks.  The KBC handles all interrupts from the User Interface Processor, assigns tasks 
to the individual processors based upon user requested jobs, generates information gathered from 
sources to enhance the performance measures of the individual processors, works with other 
sensors and outside sources for target identification, and provides the User Interface Processor 
periodic and aperiodic data for answering queries and requests from the user. 
 
Space/Space Range Processor (SSRP), Pattern Synthesis Processor (PSP), Filter Environmental 
Processor (FEP) and KBC Interfaces   
 
The KBC will provide geographical information e.g. it will periodically provide the direction the 
receiver is looking, clutter maps, the location of the emitter, locations of hot clutter jammers, 
locations of direct jammers or electromagnetic interference sources, and discretes.  The KBC will 
also provide tasks to the SSRP, PSP and FEP.  It will for example, task each of the sources of 
"interference" be reduced by a defined amount.  Sources of interference will be prioritized.  The 
SSRP, PSP, and FEP once tasked, will implement and control their own algorithms and 
processing.  The processors will optimize the KBC's request given the number of available 
degrees of freedom and their physical operational constraints.  
 
The KBC will provide control and operational requests based upon global optimization 
considerations and/or input directions from the user.  For example, the user may want to execute 
multiple algorithms and compare their results.  This may require parallel processing on the same 
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set of data.  The user may wish to restrict portions of algorithms from being executed e.g. the 
user may task the AIRS to compare the performance with and without pattern synthesis.  These 
different tasks will require the KBC to direct the control of each processing stage to operate in a 
parallel processing mode.  Figure 3 illustrates eight different parallel processing modes that will 
occur when restricting no more than two different algorithms per processing stage.  This 
approach of executing parallel algorithms, as directed by the user, will allow AIRS to learn 
which algorithms perform better under identical conditions.     
 

TEP 1 TEP 2 TEP 1 TEP 2TEP 1 TEP 2 TEP 1 TEP 2

DEP 2DEP 1DEP 2DEP 1

FEP 2FEP 1

Filter Environmental Processor (FEP),  Detector Environmental Processor (DEP),
and Tracker Environmental Processor (TEP)

 
 

Figure 3.  Parallel Algorithms 
 
The results of the KBC's tasks will be reported to the KBC, as a joint or cooperative 
accomplishment of the three processors.  The amount of interference cancellation obtained for 
each interference source will be reported by the FEP.  The information will include the amount of 
dB attenuation per interference source, whitening, and gain loss.  All three processors (SSRP, 
PSP, FEP) will report to the KBC, the algorithms used and their parameter values. 
 
The three processors' general operating procedure is to use all of their available resources while 
attempting to exceed KBC tasks.  If the resultant global performance measures are not met then 
the KBC can change the tasks to these processors during the next iteration. 
 
Detection Environmental Processor (DEP) and KBC Interface   
 
The KBC provides the DEP filter output data, clutter map data and results from the tracker such 
as the degree of belief or weights/importance of previously detected targets.  This information 
allows the DEP to choose its models for the next iteration of data.  For instance, the algorithm 
may adjust its threshold if a high priority target is entering a different clutter background.   
 
The KBC directs the DEP through tasks as discussed in the previous stage.  For instance, if the 
detection process was performed within the filtering stage then the KBC will either "shut down" 
the DEP or request it to run parallel processes on data obtained from the filter processor.  
Consider figure 4 where FEP1 incorporates detection and FEP2 does not.   
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Figure 4 Bypassing the Detection Processor 
 
The results of the KBC's tasks will be communicated back to the KBC.  Probability of detection, 
probability of false alarm, algorithms used, and their parameter values will be reported to the 
KBC. 
 
Tracker Environmental Processor (TEP) and KBC Interface      
 
The KBC provides data to the TEP that are not contained in the detection data provided by DEP  
e.g. priority of targets/tracks.  The KBC provides control information to the TEP similarly as 
discussed above based upon parallel processes, choices of algorithms and their parameters, and 
any definitive requests made by the user. 
 
The TEP will report back to the KBC for each process, each track's probability, the probability of 
missed tracks or lost tracks, and additional performance measures associated with the algorithms 
used and their parameter values. 
 
User Interface Processor (UIP) and the KBC Interface 
 
The KBC provides data and receives control from the user via the UIP.  Directed by the user the 
KBC will task the Process Manager and Data Manager (not shown in figure 2) to pre-configure 
the computers and algorithms for each of the above processors for the next flight iteration or CPI.  
It will provide information related to intermediate results, performance measures, how AIRS 
arrived at its solutions, and assist the UIP in configuring the antenna and processors. 
 
Configuration Information and KBC Interface 
 
The exchange between the Configuration Information and the KBC contains for example data 
regarding the radar, the radar’s location, antenna, and transmitter characteristics.  Some of these 
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data can be modified by the user and are pre-stored in the Data Manager and accessed via the 
UIP.  
 
Clutter Map and KBC Interface 
 
The Clutter Map is defined given the flight profile of the aircraft.  This file contains those 
parameters required by the AIRS’ algorithms obtainable from actual terrain files such as land use 
land clutter (LULC), digital elevation model (DEM) and digital line graph (DLG) databases.  
These data are provided by the US Geological Survey (USGS).  These data will be stored in an 
environmental data file and accessed via the Data Manager along with clutter map data computed 
on the fly during flight. 
 
Intelligence Data and KBC Interface 
 
Intelligence community data are provided to the AIRS.  These data may contain the location of 
jammers, a jammer’s parameters, target parameters and a target's kinematics.  These data will be 
used by different AIRS’ algorithms and knowledge sources. 
 
Flight Profile and KBC Interface 
 
Flight profile data are stored and maintained in a database via the Data Manager.  These data 
contain parameters required by AIRS’ algorithms. 
 
Antenna and KBC Interface 
 
This antenna represents the communications link to outside sources for gathering and providing 
information during flight. 
 
 

AIRS State Processing 
 

 
AIRS is a dynamic system, i.e. it changes its processing dependent upon its goals and the 
environment.  This section provides an overview of a hypothetical AIRS and its operation during 
changing conditions.  AIRS’ processing begins by loading its computers with pre-flight mission, 
intelligence, and terrain data.  The process will go through four states; pre-flight, in itial transient 
state, correlation/performance/assessment/learning state, and steady state.  Steady state probably 
won't occur until the aircraft (A/C) flys at least one to two race tracks over the same area.  The 
initial transient state will take 4 to 20+ CPIs before tracks can be formed and AIRS starts 
identifying interrogation-friend-or foe (IFF) related tracks.  The intermediate state: to correlate 
discretes, objects, shadow regions, and jammers, evaluate performance measures and set 
thresholds, and deciding which objects require nulling, how much nulling, and when nulling 
should occur.  Table 1 provides a brief description of the four different states and the functions of 
the KBC, its performance processor, and the three main radar intelligent system processors (filter, 
detector and tracker).  We have partitioned the KBC into two processor functions: one to control 
the AIRS and one to monitor and report its performance throughout its different stages. 
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System States 
Versus 
Processors 

Pre-Flight Initiate System 
& Initial 
Transient States 
(4 to 20+ CPIs) 

Correlation, 
Assessment, 
Learning (1 to 2 
Complete 
Tracks of a 
Defined 
Scene/Area) 

Steady State 

K B 
Performance 
Processor 

1- Locate and 
load all Potential 
Discretes, Clutter 
Boundaries, 
Shadow Regions, 
Jammers, 
Obstacles - Set 
System 
Parameters 

6- Monitor 
System 

11- Correlate 
Discretes, Clutter 
Boundaries, 
Shadow Regions, 
Potential 
Jammers, 
Obstacles - 
Evolve Rules 
- Insert Synthetic 
Targets - 
Measure 
Performances 

16- Insert 
Synthetic Targets 
- Measure 
Performances - 
Change Rule Sets 
Accordingly 

K B Controller 2- Locate and 
load all Potential 
Discretes, Clutter 
Boundaries, 
Shadow Regions, 
Jammers, 
Obstacles - Set 
System 
Parameters 

7- Initiate System 
and Monitor 

12- Correlate 
Discretes, Clutter 
Boundaries, 
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Potential 
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Performances - 
Change Rule Set 
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Intelligent Filter 
Environmental 
Processor 
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settings and 
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Detector 
Environmental 
Processor 
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settings and 
Thresholds for 
Pfa 
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Adjust 
Thresholds for 
Pfa  

 14- Compute 
Detections – Re-
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Adjust Pfa 
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Performances - 
Change Rule Set 
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Intelligent 
Tracker 
Environmental 
Processor 

5- Locate all 
Potential 
Discretes, Clutter 
Boundaries, 
Shadow Regions, 
Jammers, 
Obstacles - 
Define initial 
settings and 
performance 
measure 
thresholds 

10- Initiate 
Tracks - 
Compute 
Performance 
Measures  
(Number of 
Correct Tracks, 
Number of 
Dropped Tracks, 
Number of 
Incorrect Tracks) 

15- Correlate 
FAA Data with 
Tracks - 
Compute 
Performance 
Measures - 
Number of 
Tracks, Number 
of Dropped 
Tracks, Number 
of Incorrect 
Tracks - Evolve 
Rules 

20- Measure 
Performances - 
Change Rule Set 
Accordingly 

 
Table 1. AIRS States Versus Processors 

 
1-2 Pre-Flight for KB Processors.   
 
The hypothesized location of discretes, clutter boundaries, shadow regions, potential jammers, 
and obstacles are loaded into AIRS.  This can be performed in at least two ways.   
 
1. Load the location of all these entities into one table and as AIRS begins learning it will find 
detections that it will try to correlate with entities in the table.  As they are verified, their status 
will be changed from hypothesized to identified and their parameters updated accordingly.  As 
new entities are found they will be entered into the table as hypothesized and when verified, with 
detections from more than one race track, they will be upgraded to identified.  
  
2. Load all hypothesized entities into separate tables based upon their type (i.e. discretes, 
obstacles, shadow regions, aircraft, etc.) and as they are verified they will be marked identified 
and their parameters updated.  As new entities are found they are placed into a general table and 
as they are verified they can be moved to their proper table.   
 
 
The classification and storage of the different entities can be done in many ways.  Consider the 
following relations as one example. 
 
Road Traffic (Road ID #, LL1, LL2, LL3, . . . , LLn, Priority, Confidence (= 0 when fir st loaded, 
i.e. hypothesized))  
 
LLi implies latitude and longitude of points on the Earth that defines a straight line approximation 
of a road.   
 
Discretes (Discrete ID #, LL1, LL2, …, Priority, Confidence (= 0 when first loaded)) 
 
A discrete may require one or more latitude and longitude points to describe its position, e.g. a 
steel bridge.  
 
 
Clutter Types ( Clutter Type ID #, LL1, LL2, LL3, . . . , LLn, Priority, Confidence (= 0 when first 
loaded) ) 
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The location points define the boundaries for different clutter types, such as urban, forest, ocean, 
etc.  Every point within a boundary is modeled as the same type of clutter.  This describes the 
homogeneous clutter model for choosing secondary data for STAP.   
 
For shadow or obstacle type (Shadow/Obstacle ID #, LL1, LL2, LL3, . . . , LLn, Maximum 
Height, Priority, Confidence (= 0 when first loaded),  ) 
 
The Location points describe the base of the shadow or object. 
 
In addition, if we know from intelligence sources where jammers are located we may enter them 
similarly as we have for discretes.  
 
3 Pre-Flight Intelligent Filter Processor 
 
These data represent antenna characteristics that will not change during flight, e.g. number of 
antenna elements and their configuration, antenna tilt angle and pointing direction, and location 
of the antenna on the A/C.  It also contains the initial radar parameters, e.g. pulse repetition 
frequency (PRF), transmitter frequency, size of the data cube, and bandwidth of signal.  The 
performance thresholds for evaluating antenna beam distortion are also initialized.  
 
4 Pre-Flight Intelligent Detector Processor 
 
These data represent data that are initialized but are not necessarily fixed, e.g. range resolution, 
Doppler resolution, top percentile for trim mean constant false alarm rate (TM-CFAR), and 
bottom percentile for TM-CFAR.  Performance measure data are also set such as probability of 
false alarm thresholds for normal, low and very low levels of interest. 
 
5 Pre-Flight Intelligent Tracker Processor 
 
This state has similar data requirements as the pre-flight KB processor states [1-2].  All three 
processors have access to the same data.  This state also sets the tracker processor performance 
measures and parameters, e.g. number of correct tracks, number of dropped or lost tracks, and 
kinematics of potential targets. 
 
6 KB Performance Processor and Initiate System and Transient State. 
 
The processor will monitor the AIRS queues for number of potential targets and registration of 
obstacles, discretes, clutter boundaries, shadow regions, and jammers.   
 
7 KB Controller and Initiate System and Transient State. 
 
The processor will initiate the antenna processing and monitor the system queues, auxiliary data 
correlations, feedback from the different processors, system errors, number of potential targets 
and registration of obstacles, discretes, clutter boundaries, shadow regions, and jammers.  
 
8 Intelligent Filter Processor and Initiate System and Transient State. 
 
Execute non-STAP algorithm, determine the secondary rings for each cell under test given the 
stored terrain features, run the non-homogeneous detector (NHD) algorithm if necessary, 
compute beam performance, and compute antenna weights based upon hypothesized KBC nulling 
tasks.  Note for this state we don't want to distort the antenna beam pattern but gather data so the 
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KBC can determine if nulls should be placed in the direction of interferers and whether STAP is 
feasible. 
 
9 Intelligent Detector Processor and Initiate System and Transient State. 
 
The processor will implement thresholds as assigned, will default to the standard detection cell 
averaging algorithm, and use standard window sizes unless the cell of interest is at a clutter 
boundary. 
 
10 Intelligent Tracker Processor and Initiate System and Transient State. 
 
To initiate a track requires multiple CPIs.  This process is just beginning.  Correlations with 
objects and shadow regions have begun, performance measures are computed, (number of correct 
tracks, number of dropped tracks, and number of incorrect tracks) and tracks are formed.  It 
reports tracks and potential correlations with other entities. 
 
11 KB Performance Processor and Correlation, Assessment, and Learning State. 
 
This processor will use the correlations obtained by the KB Controller [in state 12] for the first 
portion of its processing, i.e. until it has correlated or discounted all the discretes, clutter 
boundaries, road traffic, and shadow regions with a high degree of confidence.  Once this task is 
completed the processor will insert synthetic targets of varying sizes and velocities to test the 
performance of the AIRS.  During the second complete scan of an area the KB performance 
processor will be able to determine if the performance measures have improved.  Based upon 
these results the performance processor may place targets in other locations and/or direct the 
controller where they should or should not use STAP.  
 
12 KB Controller and Correlation, Assessment, and Learning State.    
 
There are two levels of correlation required: 1. position of the above entities within a defined 
range ring and 2. the power level at the receiver given the distance to the entity.   Note the 
definition of the range rings relative to the Earth contain different entities as the A/C moves.  In 
addition, as the A/C moves different entities may require nulling, the AIRS may or may not want 
to place a null in their direction.  Correlating entities by power may be done as defined by the 
following relations. 
 
Road Traffic Power (Road ID #, Peak Power divided by average peak power over a defined 
window, for CPI #).  Correlations are performed by a road object correlator algorithm using data 
from the detector and tracker processors.  Power can be used to determine if the return signal 
varies differently from 1/R4 (where R is the target range) at the projected location of the road.  If 
the majority of targets/tracks that originate from the location follow the road traffic pattern then 
their correlation is high. 
 
Discrete's Power (Discrete ID #, Peak Power divided by average peak power over a defined  
range window, for CPI #).  Correlations are performed by a discrete object correlator algorithm 
using data from the detector and tracker processors.  Verify that the power varies as 1/R4 and the 
objects do not move, i.e. they do not generate a track.   
 
Shadow/Obstacle Power (Shadow/Obstacle ID #, Peak Power divided by average peak power 
over a defined window, for CPI #).  Correlations are performed by a shadow/obstacle object 
correlator algorithm using data from the detector and tracker processors.  Correlating range 
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ambiguity areas and dropped or coasted tracks help verify shadowed/obstacle locations.  
Shadowed regions loaded at pre-flight are computed from United States Geological Survey 
(USGS), or National Imagery and Mapping Agency (NIMA) databases, with an assumed flight 
path.  If the databases are old then the terrain may have changed.    
 
Data from IFF responses, outside sources, and other sensors are used to update jammer objects, 
aircraft, ground moving targets, and all unknown objects.  Numerous data sources are used to 
register each CPI with ground "truth". 
 
 
13 Intelligent Filter Processor and the Correlation, Assessment, and Learning Stage. 
 
Rules as to when STAP should and should not be applied are required.  It is assumed that the 
radar is flying in a known pattern and will be looking at the same scene each time it flies the same 
pattern.  During the first complete flight over the defined scene the AIRS could execute a 
standard non STAP algorithm.  The KB performance processor should place targets in non-
homogeneous areas e.g. near roads and clutter boundaries.  The position and type of synthetic 
targets are not made known to the KBC.  In the second complete scan the KBC should attempt to 
use STAP where ever it can.   
 
A method for determining if there is a sufficient number of training range rings for STAP is 
required.  A method is to correlate each range ring with the terrain map to identify where there 
are discontinuities, major roads, etc. and label each region or sector-range with a terrain type.  A 
classification code range ring correlator algorithm will implement this method in collaboration 
with the intelligent filter processor.  The major or minor classification codes used in the USGS 
database, e.g. urban, forest, water, etc. will be used.  Once range rings are chosen they can be 
evaluated for their homogeneity by using NHD.  With a combination of the pre-flight loaded 
database, the use of the radar returns and the NHD, the system can "learn" which areas are 
homogeneous and evolve its rules as to which filter algorithms to employ. 
 
During this state the controller will assign a low, medium, and high performance threshold levels 
for beam performance.  This information along with requests of where to place nulls in the beam 
pattern will be provided to the intelligent processor.  After a number of CPIs the KBC will 
evaluate performance measures from all the processors.  Based upon this evaluation the KBC 
may assign different performance threshold levels and null requests for the filter processor. 
 
14 Intelligent Detector Processor and the Correlation, Assessment, and Learning Stage.   
 
This state uses the correlation data provided by the KBC to recognize terrain boundary locations.  
For those test cells within homogeneous regions the standard detection cell averaging algorithm 
and window sizes will be used.  For those test cells near boundaries the CFAR processors will 
choose reference cells, algorithms, and window sizes as developed under the ES-CFAR program 
(1,5).  The processor will perform detections, implement thresholds as assigned, re-compute and 
adjust probability of false alarm (Pfa) thresholds, evolve rules to apply the standard cell averaging 
rules, determine when to apply different algorithms, and when to recommend changing the 
detection threshold.  
 
15 Intelligent Tracker Processor and the Correlation, Assessment, and Learning Stage.  
 
Discrete objects, shadow regions, roads, and federal aviation administration (FAA) data will be 
obtained from the KB Controller and used to help correlate with existing targets and tracks.  
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Correlations of dropped tracks and highways will be performed with the KBC.  Performance 
measures (number of correct tracks, number of dropped tracks, number of incorrect tracks) and 
sorting of tracks will be computed.  It will report back to the KBC all its tracks and any 
discrepancies with the data obtained from the KBC.  Discrepancies will be settled by the KBC 
and the other processors.  As corrections are made the AIRS will evolve its rules and learn. 
 
16 KB Performance Processor and the Steady State. 
 
The performance processor will constantly measure the performance of all processors to 
determine whether AIRS is performing better.  The processor will continually look for changes or 
requests submitted by the user or changes in data from outside sources.  It will monitor 
performance by checking the beam pattern performance data, detection data, and track data.  It 
will insert known radar cross section (RCS) synthetic targets at locations where there are 
boundaries in terrain types and evaluate the detection capability of the system.  By placing 
different targets at different locations the performance of the current rules can be computed.  If 
performance is low then the rules being used by the KBC will be modified.    
 
17 KB Controller and the Steady State. 
 
The KBC will access the same performance measures as presented in [16].  Based upon these 
performance values the KBC will asses its current rules and apply changes accordingly.  The 
rules the KBC can change are based upon a processor's reported data and the user requests, such 
as change in the antenna’s beam pattern and the A/Cs flight path.  
 
18 Intelligent Filter Processor and the Steady State. 
 
This processor will monitor its beam pattern performance.  It will change its rules based upon the 
environment and the number of nearby jammers and discretes.  For example, the processor should 
manage the number of degrees of freedom required to notch jammers and descretes and yet 
maintain enough degrees of freedom to perform STAP processing.  It will measure its own 
performance and report it to the KBC for total sensor performance evaluation. 
 
19 Intelligent Detector Processor and the Steady State. 
 
During this state its processor measures performance based upon the number of detections and 
number of false alarms.  It will increase or decrease the threshold level, change window sizes for 
CFAR algorithms, and change rules for choosing CFAR algorithms based upon previous flights 
over the same or similar clutter interfaces. 
 
20 Intelligent Tracker Processor and the Steady State. 
 
This state measures performance based upon number of correct tracks, missed tracks, and number 
of false tracks.  Based upon these numbers and the terrain, the processor will adjust its rules and 
thresholds to increase its performance.    
 

Unmanned Air Vehicles 
 
 
Portions of AIRS to date have been applied to an airborne radar surveillance system flying a 
repetitive route accumulating data and knowledge to be used during the next sortie. For example 
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the knowledge that can be gained, are the correlation of road traffic with moving targets, the 
location of shadowed regions by mountains, or the location of large discrete targets and tunnels. 
This knowledge can subsequently be used for changing the algorithms and providing information 
throughout the signal and data processing chain. However, today’s adversaries are not traveling in 
truck convoys, flying aircraft in formation, or traveling the desert in tanks. They cannot easily be 
detected and tracked with stand-off airborne sensors such as AWACS or JSTARS. Today’s 
adversaries are embedded in urban environments traveling in everyday vehicles, without 
uniforms, and carrying small weapons and bombs.  Large surveillance platforms cannot easily 
detect and track individuals with weapons, trucks, automobiles, or weapon caches housed in 
dense urban areas or mountainous regions that are kilometers away. To meet these requirements, 
organizations are investigating unmanned air vehicles (UAV) with different sensors which can be 
deployed in urban and mountainous regions to detect and track various targets. These UAVs may 
operate on their own, in conjunction with surveillance platforms, or with minimum human 
intervention. This section addresses some of the issues with applying an AIRS architecture to 
sensors aboard UAVs. 
 
There are numerous research efforts being sponsored in the US regarding UAVs and unmanned 
robotic vehicles (URVs).  The USAF has a program called MultiUAV [6], a simulation model, 
based upon a series of managers that cooperate in the managing of multiple UAVs. These 
managers or agents perform tactical maneuvering, as well as sensor, target, cooperation, route and 
weapons management. The sensor agent maintains a list of detections, performs automatic target 
recognition, and also performs battle damage assessment. The simulation is built in Mathwork’s 
Simulink software and allows for a set of UAVs to perform a mission together where each is 
assigned a predetermined search pattern. When a target is detected, all UAVs are notified and, 
since they have identical software, they re-plan the same or next set of tasks. UAVs communicate 
over two data buses, one for simulation related signals and one for the actual communications that 
would go on between UAVs. 
 
The US Navy is pursing a program called Autonomous Intelligent Networks and Systems (AINS) 
[7] that involves UAVs that can cooperatively work together to achieve a goal without human 
intervention. The program has three goals or focus areas: exploring intelligent autonomy, 
providing wireless communications between elements without a given infrastructure, and 
providing intelligent control of the elements by humans. Another underlying goal is to have their 
network of elements not be dependent on a global positioning system (GPS). All sensors are 
passive, e.g. no monostatic radar systems. The program has demonstrated nine helicopters flying 
safely in a limited space.  
 
DARPA is funding multiple efforts related to UAVs. One area involves emulating how ants, via 
the use of pheromones,  communicate and gather food. There are three ways ants direct their 
fellow ants to food [8]. They lay pheromones for attracting many ants to the food, certain types of 
ants will return to the nest and vibrate its antenna to attract another ant to acquire food, or they 
may vibrate their antenna differently to attract numerous ants to accomplish the same. 
Researchers have been studying pheromone usage to model how UAVs can work autonomously. 
Some researchers emulate the deposition and interaction with pheromones by the environment 
and its walkers [9]. The environment is partitioned into numerous shaped areas where each area 
receives pheromones placed by the walkers. The areas aggregate the amount of pheromones 
placed by the walkers and evaporate pheromones over time. The areas also diffuse the 
pheromones to nearby areas in the environment. It is through the walkers placing and “sensing” 
the pheromones that communications exist between the walkers or UAVs. Different flavors of 
pheromones may convey different features such as the detection of hostile versus friendly entities 
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and they have different semantics. Different flavors with the same semantics for example may 
have different evaporation rates, propagation rates or different thresholds. 
 
Digital pheromone technology was demonstrated by Johns Hopkins University and the US Army 
with four robots controlled by algorithms within a mock urban area along with two UAVs also 
controlled by pheromone technology. According to [10] “The actions of the vehicles were not 
scripted as evidenced by their adapting to the unplanned failure of one of the ground robots. 
Rather than specify each vehicle’s task, the operator simply gives a high level command to the 
whole swarm, such as ‘survey this area and track any identified targets’ or ‘patrol around this 
convoy’. The robots autonomously configured themselves to determine which robot would 
perform what task in order to accomplish the overall objective. The operator was free to monitor 
their behavior, receive their reports, and provide additional guidance as needed when priorities or 
mission objectives changed. The swarm did not need any special configuration to meet a wide 
variety of mission requirements, respective of the operating environment or the number and type 
of vehicles involved.”  
 
The above referenced research is just a sample of the work that is currently being pursued to 
guide autonomous vehicles on the earth and in the air. According to [10] an industry survey has 
identified 48 research and development programs using emerging methods for future advanced 
flight control concepts. Some researchers are studying the use of genetic algorithms in order to 
breed control behaviors. DARPA’s Software Enabled Control (SEC) program is deliberately 
avoiding using genetic algorithms. They are researching algorithms [10] that “generate behaviors 
that are possible as a group but not possible as individuals.” The program believes that the 
passive sensing of the kinematics of its neighbor is needed in coordinating collision free flight 
paths. They also believe that the UAVs must respond to human control and never perform any 
unexpected actions. 
 
There are technical issues associated with applying the AIRS architecture to UAVs. The designs 
shown in figures 1 and 2 are viable for a UAV as long as the technology employed can meet the 
size, weight, and power requirements of the UAV. Semantic Web technologies for 
communicating and controlling the various sensors aboard a UAV and between UAVs are 
required. The manner in which sensors communicate will change depending upon the deployment 
and communication media. If we deploy UAVs in urban environments, then some preloaded data 
and information will be different, i.e. building locations, their size, construction, etc.  
 
In the current AIRS architecture the radar is assumed to be flying aboard a surveillance aircraft 
viewing the earth looking for multiple threat targets. This deployment makes use of map data, 
outside information sources, and due to the repetitive race track route that is traversed, it can 
“learn” from the experience and modify its radar signal processing algorithms. The learning 
process of monostatic or multistatic radars mounted on UAVs, which do not travel repetitive 
routes, requires investigation. We must address how UAV radars learn from the terrain, outside 
sources, effectively manage its resources, and communicate between other sensors and 
information sources. As an illustration consider a digital implementation of a pheromone 
paradigm for managing UAVs. For example, an urban environment would be partitioned into 
areas where UAVs can read and write information (i.e. sense and leave pheromones) to a ground 
node, the ground nodes can be integrated together and provide information to the GIG complying 
with the Net-Centric paradigm. New learning algorithms need to be developed to use the 
knowledge acquired by pheromone model communications between sensors. For example, 
updates to map data can be left by one UAV to be read by others, detections and images can be 
shared via the pheromone model, and then allow the UAVs to work together to learn what 
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previous sensors have discovered. The nodes within each area will contain and maintain the 
knowledge for each new UAV sensor platform that visits the area.  
 

KB Tracking 
 
In the previous sections we presented an overview of AIRS and its end-to-end processing 
sequence.  We discussed its feedback and learning structure and the sharing of information and 
data from outside sources.  In two other papers contained herein Dr. Wicks provided information 
about expert system Constant False Alarm Rate (CFAR) processing and the results of a study 
where the choice of secondary or training data for STAP filtering was greatly enhanced by using 
map data.  These are two examples of using external knowledge and KB processing for 
enhancing the performance of radar signal processing.  The rules for picking the best training 
rings or the best CFAR processing algorithms are both based upon knowledge of the terrain 
obtained from map data.  The rules for their choice were hypothesized by the researchers and 
then tested by using actual radar data.  This same procedure is recommended for the development 
of AIRS.   
 
To complete the end-to-end processing architecture of an AIRS we will present a KB tracking 
algorithm that extends our US Air Force (USAF) funded work (2).  We will present an overview 
of this tracking algorithm and some of its AI rules e.g. maneuver or obstacle rules and shadow 
rules.  An AI logic structure for implementing these rules is discussed next and some additional 
rules for our AIRS design are provided.   
 
The logic structure is independent of any tracking algorithm and can address aircraft or ground 
moving targets.  It is compatible with the overall AIRS design and is modifiable.  The thrust of 
this logic structure is to utilize as much auxiliary data (e.g. maps, other sensors, target 
kinematics, and radar platform characteristics) as possible to maintain individual identifiable 
tracks.  With today's tracking algorithms if a track is dropped and another track is formed there is 
minimum effort expended to determine if the two tracks were formed from the same target.  If a 
track is dropped algorithms, for the most part, do not investigate why and then use this 
information in enhancing the overall signal processing performance.  Algorithms do not learn 
based upon their previous performances.  They are memoryless once a track is dropped.  The 
proposed logic structure presented herein addresses these issues and investigates the potential for 
building an AI based tracking algorithm.      
 
Our current tracking algorithm (2) has three separate instantiations.  There is an uncoupled two 
state alpha beta filter with position and velocity component states, an uncoupled three state 
Kalman filter with position, velocity, and acceleration component states, and an extended four 
state Kalman filter with both x and y position and velocity component states.  The tracker gathers 
reports, evaluates the reports and correlates them with known tracks, forms a correlation matrix 
and distance matrix, performs an association logic based upon nearest neighbor and oldest track, 
and performs track maintenance i.e. update extant track states, spawn new tentative tracks with 
unused reports and drops tracks with a state value of zero.  A diagram illustrating the state logic 
is shown in figure 5.  A new tentative track is given a state of 1.  If its projected position is 
detected again on the next coherent processing interval (CPI) it is given a state of 2, and so on.  
Once the target is in state 4 it is considered in a firm state as long as it is still detected for each 
subsequent CPI.  Once in the firm state, if there are four consecutive CPIs in which the target is 
not detected (i.e. a Miss) then the track is dropped.  It is our contention that once a tentative track 
exists then we should maintain its history even if it receives one or more misses.  This is 
important in order to correlate false or dropped tracks with roads, or jammers, discretes, shadow 
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regions, etc.  This information is needed to feed back to the KBC and to the other processors as 
discussed in the previous sections.   
 

Start

State 4

State 3

State 2

State 1

State 0

MissHit

Hit

Hit

Hit

Miss

Miss

Miss

Tentative
Track

Dropped
Track

Firm State

 
 

Figure 5. Integrating AI Rules 
 
The following is a preliminary design of a logical structure to capture AI rules for the tracking 
portion of AIRS.  It is by no means complete and does not address each of the numerous 
attributes for tracking any specific type of target (e.g. aircraft, ground vehicles, missiles) for all 
its possible scenarios embedded in all possible environments or clutter.  It is constructed to work 
with a radar tracking filter such as alpha beta or Kalman.  The logical structure is shown in figure 
6.  It is an abstract model and will require numerous detail level designs before it can be coded 
and tested.  The logic is described using alpha characters to indicate where in the structure we are 
referring.  Throughout the description the use of outside data sources is illustrated and the 
addition or verification of data sources is presented. 
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Figure 6. Logical Structure 
 
A. Within this decision block (A) we are asking whether a detected target is within the gate of a 
known and therefore projected track.  If the answer is yes then we simply update the track using 
the tracking filter of choice (e.g. Kalman).  If however a target is detected and it is not within any 
projected track's gate (i.e. an unused report) then we need to determine whether it lies in a larger 
AI computed gate. The idea of using more than one size or variable size gate is discussed in the 
literature.  Skolnik (3) suggests "The size of the small gate would be determined by the accuracy 
of the track.  When a target does not appear in the small gate, a larger gate would be used whose 
search area is determined by the maximum acceleration expected of the target during turns."  
Brookner (4) states while discussing the g-h filter   
 
"However, aircraft targets generally go in straight lines, rarely doing a maneuver.  Hence, what 
one would like to do is use a Kalman filter when the target maneuvers, which is rarely, and to use 
a simple constant g-h filter when the target is not maneuvering.  This can be done if a means is 
provided for detecting when a target is maneuvering.  In the literature this has been done by 
noting the tracking-filter residual error, that is, the difference between the target predicted 
position and the measured position on the nth observation.  The detection of the presence of a 
maneuver could be based either on the last residual error or some function of the last m residual 
errors.  An alternative approach is to switch when a maneuver is detected from a steady-state g-h 
filter with modest or low g and h values to a g-h filter with high g and h values, similar for track 
initiation.  This type of approach was employed by Lincoln Laboratory for its netted ground 
surveillance radar system.  They used two prediction windows to detect a target maneuver.  If the 
target was detected in the smaller window, then it was assumed that the target had not 
maneuvered and the values of g and h used were kept ... If the target fell outside of this smaller 3 
sigma window but inside the larger window called the maneuver window, the target was assumed 
to have maneuvered." 
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B. These references were provided to indicate that the radar community has tried different 
approaches for varying the gate sizes for tracking maneuvering targets.  The Kalman filter is 
more suited for maneuvering targets.  However, a universal method for choosing a larger gate 
size because of a maneuver is not well established.  If the larger gate is too large then multiple 
targets may occur within them.  The maneuverability of a target is target dependent and may be 
human dependent and very unpredictable.  What we are proposing is that the larger gate be built 
using AI techniques.  Let the history of the target's flight and a priori knowledge about a potential 
target dictate how to compute the larger AI gate. 
 
Since we are building an intelligent surveillance system we will have data obtained from sources 
outside our radar system, e.g. map data, intelligence data, and other sensors.  We can assume we 
know what type of targets we are tracking, such as helicopters, tanks, scud launchers, 
surveillance aircraft, fighter aircraft, and missiles.  If so then we know something about their 
kinematics, i.e. their minimum, maximum and average velocities for different altitudes, their 
maximum gravitational (G) force turn they can withstand and at what radius, and their maximum 
acceleration.  Using these data we can construct rules that will compute the larger size gate based 
upon a degree of belief given the type of target, e.g. helicopter or a fighter aircraft.  This degree 
of belief can be computed using information from outside data sources, its previous kinematics 
data (velocity, location, etc.), radar cross section, and altitude amongst other factors such as the 
type of mission, its position in the scene, and sensitive locations or targets. 
 
A simple rule is to take the maximum velocity for the target type that has the highest belief and 
compute the maximum distance it could have traveled from the previous position on the last CPI.  
This allows us to compute a semi-circle around the vector the target was heading.  See figure 7.  
This approach may be fine for a target like a surveillance aircraft, but not for a tank or track 
vehicle or scud launcher.  For example, a tank which can easily turn 180 degrees, a circle may 
have to be drawn with radius equal to the maximum distance that can be traveled within the time 
between CPIs.  The more we know about the targets we are tracking the more intelligent we can 
be in designing our rules and estimate our gate sizes. 
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Figure 7. Example AI Computed Gate 
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C. If the target is detected in the larger gate then we need to adjust the weights of our tracking 
filter.  Indicated in block C we can adjust the weights with rules based upon position, velocity 
and acceleration.  These rules can be simple, e.g. if the target was detected in the larger gate then 
set the weights for the next CPI as if the target were detected the first time.  This will eliminate 
any memory or smoothing that the filter had performed and start off with a larger gate size.  
More sophisticated rules can be employed and should be investigated further, dependent upon the 
tracking filter used. 
 
D. If the target was not found in the smaller or the larger gate then we need to determine if it is 
being shadowed from our radar, possibly by terrain.  Our logic is assuming that the radar system 
has a priori data that are available such as terrain data containing elevation attributes, roads, and 
bridges.  With this information we can compute whether or not given the elevation of the radar 
and the last position of the track if there is terrain obstructing the radar's illumination of the 
target.  If there is an obstruction then we should be able to project, given the last known velocity 
of the track and the changing position of the radar, how many CPIs the track will be obstructed.  
Based upon these computations we can then coast the track until the next CPI.  For each coasted 
CPI we should also look for new unused reports that can occur due to our coasted track changing 
its projected velocity while it is being obscured.  See figure 8.  If this does occur and a new track 
is initiated we should "flag" this track that it may be the coasted track.  Once we compute when 
or which CPI the original track should be visible and if it isn't, even after two additional CPIs, we 
should then revisit the new track.  During this revisit we need to compute whether or not the 
dynamics of the target/track were capable of maneuvering to the position that the radar detected 
the target.  (See paragraphs F and G for more details.)  If it is shown possible, then the new track 
should be updated as being the old track with some degree of belief.  If however, the original 
track is detected after it has moved beyond the obstruction then we should go back to the new 
track that was initiated and remove the "flag" indicating the possibility that this was a firm track 
that was coasted. 
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Figure 8. Track Obstruction 

 
E.  If the target is not in either gate and it is not shadowed then maybe the target is out of range.  
This is easy to compute given its last position relative to the radar.  If it is out of range then we 
should pass this information to another sensor platform along with the track data we have 
acquired.  The knowledge of when a target is going to reach this point can be predicted earlier 
than the last CPI.  However, the point in space when a target will be out of range is a variable 
dependent upon the radar and the target’s movements.   
 
The information that can be passed to the other platform can contain the time of the first 
acquisition, its history path, velocity range, hypothesis of type of target, and any other kinematics 
or knowledge that has been gathered throughout its track.  This data can be used by the message 
receiving platform in assigning degrees of belief about the target's maneuverability, type of 
target, and identification. 
 
F.  If the target is not in either gate, not shadowed, and not out of range then what happened to it?  
Maybe our knowledge about its kinematics was incorrect?  Maybe our sensor and filtering model 
has more error variation than we thought?  Maybe the target maneuvered and its radar cross 
section (RCS) is too low and therefore not detected.  Maybe the clutter is too large and we can't 
detect the target?   
 
What we can do is determine if there are any unused reports.  If unused reports exist then maybe 
one of these are our target.  First we need to perform a quick culling to determine if at maximum 
velocity (Vmax) our target could have traveled from where we last detected it to where the 
unused report was detected, a distance of D.  If Vmax times T (time between the two detections) 
is less than D then this unused report can't possibly be due to the same track.  If all unused 
reports result in the same finding then we conclude that there are no unused reports that may be 
due to our track.  If however, one or more computations show that the distance to the possible 
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reports could have been traveled by the target then we need to compute its possibility and assign 
a degree of belief to each report. 
 
G.  A simple algorithm for computing the possibility of an A/C maneuverability is illustrated in 
figure 9.  D is the distance between the last detection and the position of an unused report.  The 
different radii (R1 and R2) represent the different radius that one can construct that can pass a 
circle or arc through the two end points of the chord of length D.  If we assume that the 
acceleration is a maximum then we can assume that the velocity is our last estimated velocity or 
its maximum velocity.  Each assumption has a certain amount of error.  We can compute 
different values of R by the following: 
 
Rest = (Vlast)2/Accmax, 
 
Rmax = (Vmax)2/Accmax. 
 
For different values of R and D we can compute the distance of the arc connecting the end points 
of the chord D.  It can be shown from figure 9 that: 
 
Theta = 2(arcsin((D/2)/Rest)) or 
Theta = 2(arcsin((D/2)/Rmax)). 
 
The distance along the arc is 2*Pi*Rest/(Theta/360) = Darcest.  Therefore if at (Vlast)*T is less 
than Darcest then the maneuver is not possible.  Similarly if (Vmax)*T is less than Darcmax then 
the maneuver is not possible. 
 

D/2 D/2

R1R1

R2 R2

Darc1

Darc2

Position of Last
Detection

Position of Unused
Report

22

22

 
Figure 9. Maneuver Possibilities 
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Similar rules can be developed for different targets and their kinematics to determine the best 
rules for each.  The developed rules can be verified and modified by consulting with experts who 
are aware of a target’s kinematics. 
 
H. If the target is not in either gate, not shadowed, not out of range, and our kinematics is verified 
then what happened to the target?  It may have maneuvered such that its RCS decreased.  If it’s a 
ground slow moving target it may have stopped.  It may be hidden by a tunnel.  The level of 
detail for examining why a target track is undetectable needs to be perused dependent upon the 
target, the environment, the amount of detail a priori data available, and the scenario under 
investigation.  For this iteration of our AI logic structure we have elected to halt our level of 
investigation and to coast the target.  The algorithm would request the KBC to reduce the 
detection level for the location which we lost the target and the locations where we project the 
track to be for the next four CPIs.  We should identify that the track is potentially dropped and 
treat the track as a coasted track.  If after four CPIs it cannot be correlated with a detection then 
the tracking filter will drop the track. 
 

Summary 
 
This paper has provided an overview of a hypothesized integrated end-to-end radar signal and 
data processing chain.  The paper has discussed how the use of ontologies can be used for 
sensors to communicate and share information on board the same platform and between 
platforms.  The majority of the paper was devoted to describing an airborne intelligent radar 
system (AIRS).  A description of the AIRS architecture was provided along with a detailed and 
high level description of the four states of processing and the functions performed by the KB 
performance processor, KB controller and the filter, detector, and tracker processors. This section 
was followed by information related to the implications of porting AIRS to sensors mounted on 
UAVs. The last section briefly described a tracking algorithm and proposed an AI logic structure 
for incorporating rules for different targets, environments, and scenarios.  The driving force of 
this logic structure is to use AI to learn about each track and to analyze each track completely 
before it is dropped.  The logic structure is independent of any tracking algorithm, environment, 
target type, or scenario.   
 
The AIRS architecture is new and revolutionary.  Its potential is great.  It is one element in a 
bigger program dealing with waveform diversity and sensors as robots.    
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